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Integral formulations are attractive for solving eddy current problems in complex electromagnetic systems, since they do not
require the discretisation of the complement of the conducting structures. This paper addresses the coupling of Volume Integral (VI)
and Surface Integral (SI) formulations for eddy current problems on general star-shaped polyhedral and polygonal meshes.
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I. INTRODUCTION

I INTEGRAL Methods (IMs) are attractive for solving eddy
current problems in complex electromagnetic systems, since

they do not require the discretisation of the complement of
the conducting structures, which can be hard to obtain in
many cases of practical interests (e.g. in magnetic confine-
ment fusion devices, which are made of several conducting
parts/components, either thick or thin, with elaborated shapes
embedded in air/vacuum, see for example Fig. 1).

IMs for the solution of 3-D eddy current problems have been
developed a long time ago; see for example the VI formulation
on edge/face elements for eddy current problems in [1] and the
SI formulation, based on a scalar potential (ψ), in [2].

The main drawback in IMs is that a dense linear system
has to be assembled and its building and solution might lead
to impractical memory and computational time requirements if
the problem is not carefully addressed. Nonetheless, the devel-
opment of effective data compression techniques (e.g. Adaptive
Cross Approximation (ACA) coupled with hierarchical matrix
arithmetics or Fast Multipole Method (FMM)) has revived the
research on IMs [3], [4], [5] and extended their applicability
to large scale systems.

This paper addresses the coupling of Volume Integral (VI)
and Surface Integral (SI) formulations for eddy current prob-
lems in conducting domains, with arbitrary geometry and
topology, covered by general (polygonal/polyhedral) meshes.
The proposed approach works also for non-simply connected
domains, provided that a suitable cohomology basis is used
as described in [6] and [7]. Here, for the sake of brevity, the
methodology is presented for a simple geometry with a trivial
domain only. In the full paper we will present the general case.

II. INTEGRAL FORMULATIONS

The domain of interest D of the eddy-current problem is
partitioned into the external field source region Dext and the
conductor region Dc = Dv ∪Ds, where Dv is the region of
massive (thick) conductors modelled with the VI formulation
presented in [6] and summarised in II-A, and Ds is the region
of shell (thin) conductors modelled with the SI formulation
presented in [7] and summarised in II-B.

Fig. 1. Sketch of two conducting structures of RFX-mod machine: a thick
stainless steel structure (outer) with several ports for diagnostics, vacuum,
heating systems and a thin copper shell (inner). Courtesy of Consorzio RFX.

A. Volume Integral formulation

We cover the domain Dv with a polyhedral mesh forming
the primal complex Kv whose oriented geometric elements are
nodes nv , edges ev , faces fv and volumes vv (see Fig. 2). The
interconnections of complex Kv are described with incidence
matrix Gv between edges and nodes, Cc between faces and
edges and Dv between elements and faces. Then, we define
the array of degrees of freedom Tv (circulations of the electric
vector potential on mesh edges) and introduce the array of
the electric currents on mesh faces Iv = CvTv . Finally, by
enforcing the discrete Faraday law, through some algebra

[CT
v KvCv]Tv = −iωCT

v Ã
ext
v (1)

where Kv = Rv + iωMv , Ãext
v are the circulations of the

magnetic vector potential, due to external field sources, on dual
edges; Rv and Mv are the resistance and inductance matrices
calculated as in [6]. Note that in building (1), we cancel the
rows and the columns of the linear system corresponding to
boundary edges or tree edges (a standard tree-cotree gauge [1]
is applied to reduce the unknowns).

B. Surface Integral formulation

Any discrete surface in Ds is covered by a mesh formed
by star-shaped polygonal elements, whose oriented geometric
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Fig. 2. Volume Integral Formulation. Geometric elements of a polyhedron
vkv ∈ Kv . a) Primal complex: An edge eiv and a face fj

v . (b) Dual complex:
face f̃ i

v = D(eiv) dual to edge eiv (D(·) is the duality operator) and edge
ẽjv = D(fj

v ) dual to face fj
v .
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Fig. 3. Surface Integral Formulation: association of physical variables to
geometric elements of the (a) primal and (b) dual complexes.

elements of Ks are nodes ns, edges es, faces fs and volumes vs
(see Fig. 3a). Then, the dual nodes ñs, dual edges ẽs and dual
faces f̃s belonging to the dual complex K̃s are constructed
with the standard barycentric subdivision, see Fig. 3b. The
interconnections of Ks and K̃s are given in terms of the
incidence matrices Cs between pairs (fs, es) and C̃s between
pairs (f̃s, ẽs), in regard to which C̃s = CT

s holds, and the
incidence matrix Ds between pairs (vs, fs). Then, we define
the array of degrees of freedom Ts (circulations of the electric
vector potential on mesh edges) and introduce the array of
the electric currents on mesh faces Is = CsTs. Finally, by
enforcing the discrete Faraday law, through some algebra

[CT
s KsCs]Ts = −iωCT

s Ã
ext
s (2)

where Ks = Rs + iωMs, Ãext
s are the circulations of the

magnetic vector potential, due to external field sources, on dual
edges; Rs and Ms are the resistance and inductance matrices
calculated as in [7]. Note that in building (2), we cancel the
rows and the columns of the linear system corresponding to
boundary edges.

C. Coupling
Then, by combining (1) and (2), the final system is

[CTKC]T = −iωCT Ãext (3)

where K=R + iωM, with

R =

[
Rv 0
0 Rs

]
, M =

[
Mv Mvs

Msv Ms

]
(4)

and

C =

[
Cv 0
0 Cs

]
, T =

[
Tv

Ts

]
, Ãext

v =

[
Ãext

v

Ãext
s

]
(5)

Mvs and Msv are rectangle dense matrices which couple
the degrees of freedom in Dv and Ds. The computation of
the entries of M can be performed efficiently with either
CPU (openMP) or GPU implementations. To be able to solve
realistic problems, the dense matrix on the lhs of (3) can be
compressed with suitable techniques [4], [5].

III. NUMERICAL RESULTS

A simple test case is here considered to validate the imple-
mentation: a thin plate (thickness δ=3mm, surface resistivity
ρs = 5.67µΩ) is placed as a shield between a solid sphere
(radius a = 50mm, resistivity ρ= 0.017µΩm) and a circular
coil with rectangular cross section (6mm × 4mm), fed by a
sinusoidal current (f=50Hz). The total number of unknowns
is 4694 (4329 in Dv and 365 in Ds). The eddy currents induced
in the massive and in the thin conductors are shown in Fig. 4.
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Fig. 4. Eddy currents induced in a solid sphere (discretized with 1840
polyhedra, 7256 faces, 7326 edges and 1911 nodes) and in a thin shield
(discretized with 798 triangles, 1232 edges and 435 nodes) subject to the
field produced by a circular coil fed by a sinusoidal current (f = 50Hz). Red
cones: real part of the current density J, not to scale.
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